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Measurement of a short-wavelength instability in Taylor vortex flow
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We report experimental results for the stability boundary in Taylor vortex flow for a system with ra-
dius ratio 0.5. For most values of the pattern’s wave number, quasistatic measurements of the stability
boundary are in excellent agreement with the calculation of Paap and Riecke [Phys. Rev. A 41, 1943
(1990)]. In addition, for large values of the pattern’s wave number, performing quenches of the control
parameter provided evidence for a new instability which supersedes the usual Eckhaus instability. This
new instability is not evident in the quasistatic measurements because of the existence of a nonuniform
wave number. We have also observed evidence for this instability with radius ratio 0.74.

PACS number(s): 47.20.Ft, 47.54.+r

I. INTRODUCTION

One of the classical systems for the study of instabili-
ties and pattern formation is Taylor-Couette flow, the
flow of a fluid confined between two concentric cylinders.
When rotating the inner cylinder about its axis, the initial
instability is a transition from a uniform state to a state
which is periodic in the axial direction [1]. It is well
known that one-dimensional patterns such as this are
subject to the long-wavelength Eckhaus instability [2-6].
One of the successes in the study of pattern-forming sys-
tems is the agreement between the calculated and mea-
sured Eckhaus stability boundaries for Taylor-Couette
flow which has been found with two different radius ra-
tios [3,7-9]. Recently, Paap and Riecke [10] calculated
the stability boundary for Taylor-Couette flow for an ad-
ditional radius ratio, =0.5, and predicted the existence
of a new, short-wavelength instability which supersedes
the Eckhaus instability when the system is in a large-
wave-number state. Labeling the periodic states by their
wave number g, the Eckhaus instability leads to the
minimum possible adjustment of g, the loss or addition of
one periodic unit [5], whereas the short-wavelength insta-
bility results in a relatively large adjustment of g, the loss
of multiple periodic units [10]. In this paper, we present
an experimental measurement of the stability boundary
for a Taylor-Couette system with n=0.5. We observe
dynamics consistent with the existence of a short-
wavelength instability, and the measured stability bound-
ary agrees with the calculated one.

The rest of the paper is organized as follows. Section
II contains a description of the apparatus and experimen-
tal parameters. Section III is a brief discussion of the
theory. Sections IV and V present the results of the mea-
surement of the location of the stability boundary and the
dynamics of the instability, respectively. Section VI is a
summary and conclusion.

II. DEFINITION OF PARAMETERS
AND EXPERIMENTAL APPARATUS

We used a standard Taylor-Couette apparatus [3] con-
sisting of two concentric, straight cylinders with a fluid
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confined between them. The outer cylinder was made of
plexiglass, and the inner one of an aluminum core clad
with delrin. The inner cylinder was rotated with an an-
gular frequency Q, and the outer cylinder was held fixed.
Below a critical value Q, of €, the flow is purely azimu-
thal and shows no axial structure. At (), the flow under-
goes a transition to Taylor vortex flow (TVF), which con-
sists of counter rotating vortices stacked along the axis of
the cylinders. The flow pattern is treated as one dimen-
sional, with a wave number

qg=2m7/A,

where A is the axial width of a pair of vortices. The ratio
of the inner to outer cylinder radius (radius ratio) was
1=0.499, and the radial gap between the cylinders was
d =1.253 cm. The cylinder radii were uniform to +0.003
cm. The centers of cross sections perpendicular to the
axis deviated from a straight line by no more than
+0.003 cm. The gap contained two nonrotating boun-
daries made of delrin; one located near each end of the
apparatus. The boundaries’ axial positions were adjust-
able by means of two 2.5-mm-diameter stainless-steel
rods which passed through seals in the end caps of the
apparatus and attached to each boundary. This allowed
for changes of the aspect ratio I'=1/d, where [ is the
physical distance between the boundaries, from 28 to 18.
During an experimental run, the faces of both boundaries
were located at least 5 cm from the ends to thermally iso-
late the working fluid from the end caps. One boundary
was positioned by hand, and the other boundary was po-
sitioned with a resolution of 0.005 mm by a stepper mo-
tor using a commercial, computer-controlled driver.
They were 4.5 cm long and were a sliding fit in the outer
cylinder to ensure that the face of the boundary was per-
pendicular to the axis of the cylinders. As shown
schematically in Fig. 1, the gap between the inner
cylinder and the inner surface of the boundaries was 0.14
cm over a 0.025-cm-long axial range adjacent to the face
of each boundary, and widened to 0.75 cm for the rest of
the length of the boundary. This large gap ensured that
viscous heating of the fluid was negligible.

The fluid consisted of 50% by volume glycerol in wa-
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FIG. 1. Schematic diagram, not to scale, of the apparatus
showing the shape of the movable boundaries. See the text for
the dimensions. The axial position of each boundary is adjust-
able by means of the two thin stainless-steel rods attached to
each boundary as shown.

ter, seeded with either 1% by volume Kalliroscope [11]
for flow visualization, or 1 ppm of 1.07um-diameter po-
lystyrene spheres for use with laser-doppler velocimetry
(LDV) [12]. The useful lifetime of the Kalliroscope sus-
pension was increased by adding 0.01% stabilizer [11] to
the solution. LDV allows measurement of the axial ve-
locity component of the fluid at a given axial and radial
position in the cylinder, but does not allow simultaneous
measurement of the velocity at many points along the
cylinder axis. To visualize the flow along the entire sys-
tem at the same instant in time, Kalliroscope was used.
This does not allow for a quantitative measurement of the
velocity but does reveal the pattern. ), depends on the
viscosity of the fluid, which for water varies 2% per de-
gree, and for glycerine varies 9% per degree. To main-
tain a constant viscosity, the system was temperature
controlled by flowing water along the exterior of the
outer cylinder, but not through the endcaps. The water
was temperature controlled to 15 mK, resulting in a
stability in Q_ 0of 0.1%
It is convenient to define a reduced stress parameter

e=Q/Q,—1.

As one steps quasistatically through €=0, the pattern
that emerges has ¢ =g, in a system with infinite axial ex-
tent. In the finite system with rigid, nonrotating boun-
daries, there is no sharp bifurcation from Couette flow to
TVF [3]. For all values of (2, the boundaries generate
Ekman vortices at each end. This drives vortices in the
bulk of the system which have an amplitude that decays
exponentially with increasing distance from the ends.
Thus, in principle, the entire system is filled with vortices
as soon as 1>0. However, when € is much less than
zero, the amplitude of the vortices in the center of the
system is too small to detect experimentally. The value
of ) at which vortices are first detected in the center of
the system, Q,,, depends on the length / of the system.
By measuring ,, as a function of / and extrapolating in
a well-defined way to infinite /, one infers a value [3] for
Q. and thus e=0.

For the rest of the paper, we will use nondimensional
variables with lengths scaled by the gap d between the
cylinders, and time scaled by the viscous diffusion time
t,=d*/v=27 sec, where v is the kinematic viscosity.
We define the reduced wave number as

qz(q_qc)/qc ’

where, for our system [13], g, =3.163.

The wavelength of the pattern was measured in two
different ways, depending on the probe of the flow that
was being used. During Kalliroscope visualization, a
traveling microscope mounted parallel to the axis of the
apparatus was used to measure the location of the inflow
and outflow boundaries. The wavelength of the pattern is
the distance from one outflow (inflow) boundary to the
next outflow (inflow) boundary. The average wavelength
of the system was measured, discounting one vortex pair
at each end so as to exclude the Ekman vortices. The
traveling microscope had a 0.05-mm resolution, and the
precision in the average wave number was 0.2%. When
using LDV, the velocity profile for the central three or
four vortex pairs was measured, and the zero crossings
were determined. This method had a precision in the
average wave number of better than 0.1%.

Originally, our Taylor vortex apparatus consisted of
one fixed boundary and one movable boundary. With
this setup, states with a uniform wave number were ob-
served for § >0 and € near the stability boundary. By
employing two movable boundaries, we were able to elim-
inate the nonuniformity for § <0.35, but for values of
g >0.35 and € near the stability boundary, states with a
nonuniform wave number were still observed. The
nonuniformity in wave number was spatially distributed
so as to cause one half of the system to have an average
wave number g, that was larger than the average wave
number ¢ for the entire system. Defining
AG=(q, —q)/q., states with Ag <0.003 were con-
sidered to have a uniform wave number. For the states
with §>0.35 and € near the stability boundary, Ag
reached values as large as 0.035. Because the theory as-
sumes a uniform wave number, such a large nonuniformi-
ty makes comparison with predictions difficult. The
method used to circumvent this problem is described in
Sec. V.

III. THEORETICAL PREDICTIONS

Figure 2 gives theoretical predictions for the stability
boundaries in the €-g parameter space for the 7=0.5
Taylor-Couette system [10,13]. Below the neutral curve
[13] (solid line), Couette flow is stable. Taylor vortices of
infinitesimal amplitude and wave number g grow ex-
ponentially for values of € above the solid line. The
dashed line gives the stability boundary of fully
developed TVF [10]. Within it, states with a finite ampli-
tude are stable. For values of € and g between the solid
and dashed lines, Taylor vortex flow is unstable because
the growth rate o(k) of infinitesimal perturbations with
wave number k is positive for some value of k. One can
distinguish between different instabilities according to the
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FIG. 2. The stability boundary (dashed line) and the neutral
stability boundary (solid line) for radius ratio 0.5. Couette flow
is stable with respect to perturbations outside the neutral stabil-
ity boundary (region 3). Above the neutral stability curve, Tay-
lor vortex flow exists in a range of wave numbers g for each e.
States with wave numbers inside the stability boundary (region
1) are stable, and those with wave numbers between the neutral
stability boundary and the stability boundary (region 2) have a
positive growth rate but are unstable.

value of k for which o (k) first becomes positive. When
o(k) first exceeds zero near k =0, the instability is of the
Eckhaus type [2—-6]. The new short-wavelength instabili-
ty under consideration here yields positive growth rates
[10] near k=q /2. Two typical o(k) curves for =0.5
calculated by Paap and Riecke [10] are plotted in Fig. 3
for states with two different values of q. The value of €
for each curve is such that the states are unstable, but
close to the stability boundary, i.e., just outside region 1.
The dashed line shows that the state with § =0.369 is un-
stable to perturbations with k near zero. This illustrates
the standard Eckhaus instabiliity. The state with
g =0.462 has a growth rate given by the solid line in Fig.
3, and is only unstable to perturbations with k near g /2.
This is an example of the short-wavelength (g /2) instabil-
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FIG. 3. Perturbation growth rates o, in units of (¢,) ', vs the

wave number of the perturbation (k/q). The curves show the
difference between the short-wavelength (solid curve, § =0.462,
€=1.54) and Eckhaus (dashed curve, § =0.369,e=0.555) insta-
bilities.

ity [10]. The location of the stability boundary in Fig. 2
for a state with wave number ¢ is the value of € at which
either k=0 or q /2 perturbations first acquire a positive
growth rate. The type of instability is defined by which
value of k first acquires a positive growth rate.

The experiments do not directly measure the growth
rates of the perturbations. Instead, the nature of the
transition from an unstable to a stable state is observed.
This depends on o (k), as well as on the nonlinear dynam-
ics of the system. For the Eckhaus case, the experimen-
tally observed transition [3] agrees with the calculations
both at the stability boundary and far into the unstable
region [5,6]. Near the stability boundary the transition
between an unstable and stable state occurs via the loss or
addition of a single vortex pair [3,5]. Further below the
Eckhaus stability boundary, decreasing € for a fixed g, the
transition occurs via the loss or addition of multiple
pairs, with the number of pairs increasing as the distance
from the stability boundary increases [6].

Currently, no such detailed calculations exist for the
q /2 case, but reasonable conjectures about the dynamcis
of the transition can be made. The first supposition is
that when the o(k) curve is positive only for k =g /2,
every other vortex pair in the system would be lost [10].
Second, one expects the dynamics of the g /2 and Eck-
haus instabilities to be similar when the system is
quenched so far below the stability boundary that the
growth rates of the perturbations are positive over a simi-
lar range [14]. The growth-rate curves in Fig. 4(a) are ex-
amples of an Eckhaus instability (dashed line) and a q /2
instability (solid line) for which this occurs [10]. In both
cases, perturbations of all wavelengths between
p=k/q=0 and p=0.5 have a positive growth rate, and
the perturbations with p=0.5 have a growth rate
significantly greater than zero. However, as shown in Fig.
4(b), the location in the e-g plane relative to the theoreti-
cal stability boundary for the Eckhaus case (triangle) is
very different from the ¢ /2 case (circle). For the Eck-
haus case, there is a significant difference in g between the
location of the stability boundary and the value at which
perturbations with a wave number p =0.5 have a sub-
stantial positive growth rate. For the example shown in
Fig. 4(b), the difference is 0.7%. For the g /2 instability,
the difference in g between where only perturbations with
k =q/2 have a positive growth rate and where all per-
turbations have a positive growth rate is at most [10]
0.2%. Figure 4(c) illustrates the difference in growth-rate
curves for three states, all lying very near the circle in
Fig. 4(b). In the experiment, the local variation in g was
always at least 0.2% for g > 0.35, making it impossible to
probe the region where the only perturbations with posi-
tive growth rate were those near g /2. Thus it is difficult
to establish the nature of the instability unambiguously
from experiment. However, sufficiently near the Eckhaus
stability boundary we expect to observe the loss or addi-
tion of a single vortex pair, and near the g /2 stability
boundary we expect to observe the loss of multiple vortex
pairs. In the latter case, the number of pairs lost should
be similar to the number of pairs lost far enough below
the Eckhaus stability boundary that o (k) has a maximum
near k =q /2.
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IV. MEASUREMENT
OF THE STABILITY BOUNDARY

Figure 5 shows the measured and theoretical [10] sta-
bility boundaries for a radius ratio =0.5. The line in
the region labeled 2 is the predicted q /2 instability; the
rest of the line is the predicted Eckhaus instability. The
value of g for each experimental point is an average of g

0.06 ,' . 1

0.04 | . ~

0.02

Growth Rate (units of ¢,;*)

(b)
151 1

0.36 0.4
(@-9c)/qc

v)

©

0.02 | e i

T
1

-0.02

Growth Rate (units of ¢

0 0.1 0.2 0.3 0.4 0.5
k/q

FIG. 4. (a) Growth-rate curves for a state with §=0.464 and
€=1.54 (¢ /2 instability, solid line) and a state with §=0.382
and €=0.555 (Eckhaus instability, dashed line). Both states are
unstable. (b) Location of (g,€)=(0.464,1.54) (open circle) and
(7,€)=(0.382,0.555) (triangle) with respect to the theoretical
stability boundary (solid line). (c) Growth-rate curves for three
states near the g /2 instability with very slightly different wave
numbers at €=1.54. The state with §=0.461 (dotted line) is
stable. The states with §=0.462 (solid line) and §=0.464
(dashed line) are both unstable.
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FIG. 5. The observed stability boundary (triangles) and the
calculated stability boundary (solid curve) for radius ratio
1n=0.5. Region 2 is predicted to span the new g /2 instability.
The rest of the curve is predicted to be determined by the Eck-
haus instability.

over the system length, excluding one roll pair from each
end.

The experiment was done in the following manner.
The movable boundary not being controlled by a stepper
motor was positioned 10 cm from the corresponding end
of the cylinder when creating states with ¢ >g,, and 5 cm
for states with ¢ <g,. For creating states with ¢ >g,, the
stepper-motor-controlled boundary was positioned as
close to the corresponding end of the cylinder as possible,
giving an aspect ratio I'=26. For creating states with
q <gq., the stepper-motor-controlled boundary was posi-
tioned so that '=18. Once the boundaries were posi-
tioned, an integer number of vortex pairs was created by
rapidly varying € from well below O to a value near 1. In
general, this produced betweeen 13 and 15 vortex pairs
for ¢ > g., and between 10 and 12 vortex pairs for ¢ <gq,.
Once the vortices had equilibrated, € was adjusted to be
well above the theoretical stability boundary for the
desired g. Then, the stepper-motor-controlled boundary
was quasistatically moved in for ¢ >g¢, or out for ¢ <g,,
which compressed or stretched the vortices, respectively,
until the desired g was reached. The final result was to
have the vortices confined between the boundaries, which
were roughly the same distance from the ends of the ap-
paratus.

Once the system was in a state with the desired value
of g, € was adjusted so as to bring the system close to the
instability. Near the instability, steps in € of 0.005 were
taken every 2 h, or 270¢,. After each step, if one or more
vortex pairs were lost or gained, the average of the
current and previous values of € was declared the insta-
bility point. If no adjustment occurred, the next step was
made. Once an adjustment occurred, the new state was
used as an initial state, and the above procedure of ad-
justing € was repeated.

For most of the predicted Eckhaus boundary, the
agreement between experiment and theory is excellent,
and the loss or addition of a single vortex pair was ob-
served as expected. For g values where the boundary is
predicted to be governed by the g /2 instability, we also
observed the loss of only a single vortex pair, instead of
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the expected multiple-pair loss. Figure 5 shows that
there exists a significant discrepancy between experiment
and theory as to the location of the stability boundary for
points with g > 0.350 [see Figs. 7(a) and 7(b) for expanded
views of the boxed sections in Fig. 5]. This discrepancy
can be understood in terms of the nonuniformity in wave
number discussed in Sec. II.

The effects of a nonuniform wave-number distribution
are illustrated by the space-time plot in Fig. 6 which
shows the transition from 14 to 13 vortex pairs at
§=0.470 and e=1.88. The wavelength of the pattern, as
defined in Sec. 11, is the axial width of a vortex pair and is
labeled by A in Fig. 6. Because the Kalliroscope signal
does not differ much for inflow and outflow boundaries, a
vortex pair corresponds to a pair of peaks in the image.
The vertical dashed lines in Fig. 6 divide the system into
two parts of equal length. For this case, Ag=0.035,
which corresponds to a g for the left half of the system of
0.505. Figure 6 also shows that the vortex pair loss at
300z, occurs in the left half of the system. If only this
half of the system is considered, one can see from Fig.
7(b) that §=0.505 and €=1.88 (shown as an open circle)
are in the unstable region. The pair loss occurred when
this region of the system had an unstable wave number.
This was true for all of the measured stability boundary
points which disagreed with theory. However, the size of
the region which was locally unstable depended on g and
€.

The nonuniform wave number for states with g >0.350
can also account for the observation of a single-pair loss
in region 2 of Fig. 5, instead of the predicted multiple-
pair loss. Because the transition always occurs when
some neighborhood around the pair with the largest wave
number crosses the theoretical stability boundary, we as-
sume that the wave-number adjustment results from the
system being ‘““locally” unstable [15]. The dynamics of
this local transition cannot be used to distinguish between
the Eckhaus and q /2 instabilities because, in the immedi-
ate neighborhood of a vortex pair, the loss of every other
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FIG. 6. Time series of scanlines of TVF for §=0.470,
=1.88, and Ag=0.035. The variation of each scanline is pro-
portional to the intensity of the Kalliroscope signal. The three
vertical dashed lines are a guide to the eye, and separate the sys-
tem into two halves. The left half has a higher g, and this is the
half in which the transition occurs.

pair is the loss of one vortex pair. To compare the Eck-
haus and ¢ /2 instabilities, the dynamics of a uniform
state at the stability boundary need to be studied. To ac-
complish this, we took advantage of the fact that the
nonuniformity takes longer to develop than does either
the Eckhaus or g /2 instabilities. We report our results in
Sec. V. It is possible that the nonuniformity is an intrin-
sic instability, and not simply due to an inhomogeneity in
the system. However, for the rest of the paper, “instabili-
ty” will refer specifically to a wave-number adjustment
process through the loss or addition of a vortex pair or
pairs.

V. DYNAMICS OF UNIFORM STATES

Using quasistatic measurements, the local nature of the
transition for §>0.350 complicated attempts to distin-
guish the Eckhaus and g /2 instabilities, but the location
of the experimental and theoretical boundaries agreed
when the nonuniform wave number was taken into ac-
count. To observe the dynamics of the instability for a
uniform state, we performed quenches as follows. A state
with the desired average wave number was created, as for
the quasistatic measurements, and € was set far enough
above the stability boundary so that the steady state had
a uniform wave number. Then the value of € was stepped
to a value at or below the quasistatically measured stabili-
ty boundary. Instead of changing € in a single step, some
quenches were performed by ramping € at dimensionless
rates ¢ ,de/dt ranging from 0.03 to 0.14. Independent of
the quench method, the wave number of the state
remained uniform to better than 0.4% as € was changed.
Once the final value of € was reached, the evolution of the
system was recorded as a time series of Kalliroscope im-
ages. The evolution of the system was also independent
of the quench method.

Quenches were performed in the two boxed regions of
the €-g plane labeled in Fig. 5. Region 1 is predicted to
be Eckhaus unstable, and region 2 is predicted to be g /2
unstable [10]. Figures 7(a) and 7(b) show the number of
pairs lost in each quench for these regions, respectively.
For g >0.350, the quasistatistically measured boundary
is significantly above the theoretical boundary described
previously in Sec. IV. For these values of g, we per-
formed quenches to values of € between the measured and
theoretical boundaries. The behavior of these quenches
was consistent with the quasistatic measurements. The
wave number of the system devleoped a nonuniform dis-
tribution, and a single pair was lost when the state be-
came locally unstable. In contrast, for quenches at or
below the theoretical stability boundary, the loss of a vor-
tex pair or pairs occurred on a faster time scale than the
evolution of a nonuniform wave-number distribution.
The number of pairs lost for these quenches was indepen-
dent of the location of the quasistatically measured
boundary relative to the theoretical boundary. However,
the number of pairs lost was dependent on whether the
quench was in region 1 or 2 of Fig. 5.

For quenches in region 1, we observed behavior con-
sistent with the Eckhaus instability as shown in Fig. 7(a).
We observe the loss of a single vortex pair when quench-
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ing to the theoretical boundary (solid line). For quenches
further into the unstable reigon, there is an increase in
the number of pairs lost from one to two to three as the
quench depth is increased. For the quenches in region 2,
we observed behavior consistent with that expected for
the g /2 instability as shown in Fig. 7(b). Quenches to the
theoretical boundary result in the loss of three pairs, as
was seen in region 1 only far below the Eckhaus bound-
ary. Figure 8 shows gray-scaled space-time plots for four
quenches near the boundary. The first three quenches
shown are from region 2 of Fig. 5, and the fourth quench
is from region 1. Even for the quenches to the theoretical
boundary, a small nonuniformity in the wave number be-
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FIG. 7. (a) Results of quenches for which the instability was
predicted to occur via the Eckhaus mechanism (region 1 of Fig.
5). Single-pair losses (squares) occur for quenches close to the
theoretical boundary (solid curve), and for quenches anywhere
between the quasistatically measured boundary (triangles, see
Fig. 5) and the theoretical boundary. Two- (plus signs) and
three- (crosses) pair losses occur for quenches below the theoret-
ical boundary. For §=0.36, the three-pair losses occur for
quenches made at or below the location where perturbations
with wave number ¢ /2 acquire a positive growth rate (dashed
curve). (b) Results of quenches for which the instability was
predicted to occur via the short-wavelength (q /2) instability (re-
gion 2 of Fig. 5). Here single-pair losses (squares) occur for
quenches between the quasistatically measured (triangles, see
Fig. 5) and theoretical (solid curve) stability boundaries, but
only after a state of spatially nonuniform wave number
developed. For quenches made to points at and below the
theoretical boundary, we observed two- (plus sign) and three-
(crosses) pair losses when the wave number was uniform.

gan to develop. If this had dominated the transition, the
initial pair loss would have occurred in the region of the
largest local wave number, as it did for the quasistatic
measurements with § >0.350 (see Fig. 6). For the first
three plots in Fig. 8, the left half of the system has a
slightly larger average wave number, but the first pair
loss does not always occur in that half of the system.
Furthermore, the transition occurs throughout the sys-
tem, not locally. This demonstrates that the instability is
not dominated by nonuniformities in §. The fourth plot
in Fig. 8 shows a typical Eckhaus transition and illus-
trates the differences between the quenches in regions 1
and 2. In addition to the number of pairs lost, the dy-
namics of the pair loss varies. For higher values of g, the
pair loss is more precipitous, as shown in more detail in
Fig. 9.

We also performed quenches starting with an initial
state that had a nonuniformity in wave number greater
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FIG. 8. Gray-scaled space-time plots of the evolution of the
system after a quench from a uniform state. For images (a)-(c),
the instability is predicted to be q /2, while it should be of the
Eckhaus type for image (d). For all four quenches, =0 is the
time that the final value of € was reached. (a) and (b) are for
quenches from €=2.38 to 1.84 and 1.85, respectively, for a state
with average reduced wave number §=0.495. (c) is for a
quench from €=2.34 to 1.84 with §=0.492, and (d) is for a
quench from €=0.14 to 0.05 with §=0.174. The theoretical
boundary is at €=1.866 for §=0.495, €=1.840 for §=0.492,
and €=0.062 for §=0.174.
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FIG. 9. Magnified view of two pair losses. (a) is a magnified
view of the central pair loss of Fig. 8(a), (§,€)=(0.495,1.84),
and 9(b) is a magnified view of the pair loss in Fig. 8(d),
(7,€)=1(0.174,0.05).

than 0.5%. Because the nonuniformity was present be-
fore the quench, it should have dominated the dynamics.
Using this initial state, quenches to values of € at or
below the predicted g /2 boundary exhibited the loss of
only a single vortex pair, which occurred in the region of
largest wave number, demonstrating that there is a
difference between uniform and nonuniform systems.
Therefore, by creating a uniform initial state at the
theoretical boundary, we sufficiently suppressed the
effects of the nonuniform wave number, enabling the ob-
servation of the dynamics of the instability. We observed
the two types of transitions discussed in Sec. III: the loss
of a single vortex pair near the Eckhaus stability bound-
ary, and the loss of multiple (three) vortex pairs far below
the Eckhaus boundary and near the g /2 stability bound-
ary.

Recently, Riecke [14] predicted that the g /2 instability
should be operative for the Taylor-Couette system with a
radius ratio n=0.75. For this system, we have observed
behavior consistent with the behavior observed near the
predicted g /2 stability boundary in the 7=0.5 system.
For the n=0.75 system, the number of vortex pairs was
between 28 and 30, and quenches at or below the predict-
ed g /2 instability resulted in the loss of six or seven vor-
tex pairs. This is the same relative change of g observed
in the n=0.5 system. Figure 10 is an example of a
space-time plot for such a quench, but a detailed study of
the stability boundary remains to be done for 7=0.75

time (units of d2/v)

0 32.5
position (units of d)

FIG. 10. Gray scaled space-time plot showing the evolution
of the system following a quench using the radius ratio n=0.75
apparatus. The quench was from €=2.81 to 1.96 for a state
with average reduced wave number §=0.66. The theoretical
boundary is at €=2.00 for this value of g, and is predicted to be
determined by the g /2 instability.

VI. SUMMARY

In Sec. IV, we reported our measurement of the stabili-
ty boundary for the Taylor-Couette system with a radius
ratio 0.5. To our knowledge, a measurement of the sta-
bility boundary for this radius ratio has not previously
been reported. We found good agreement with the
theoretical boundary calculated by Paap and Riecke [10]
in the range from near €=0 up to e~2. Especially for
negative § the agreement was excellent, and the data even
reproduced the predicted reentrant nature of the stability
boundary. For positive g, equally good agreement was
obtained up to §=0.25. For even larger g, the apparent
differences between theory and experiment can be ac-
counted for by a nonuniformity in the wave number of
the states which develops in this parameter range. In
Sec. V, we discussed the quenches performed to study the
dynamics of the instabilities which enabled us to distin-
guish between the global dynamics of the wave-number
transitions in the uniform system and local transitions in-
duced by a nonuniform wave number. Two types of sys-
tem wide dynamics were observed for uniform states at
the theoretical boundary which distinguished the Eck-
haus instability with its single-vortex-pair loss from the
new instability which leads to multiple-vortex-pair loss.
To our knowledge, this is the first experimental observa-
tion of this new instability, and the behavior of the new
instability is consistent with the predicted g /2 instability
[10,14]. We also saw very convincing evidence for this
instability in an =0.75 system.

In the experiments performed by Dominguez-Lerma,
Cannell, and Ahlers [3], a discrepancy between theoreti-
cal and measured stability boundaries was observed for
g >0, but for § <0 excellent agreement was found be-
tween theory and experiment. In these experiments, a
single movable boundary was used, and a nonuniform
wave number was observed for § > 0. One asymmetry be-
tween the § >0 states and § <O states which could ac-
count for these results is in the method used to generate
the states: states with § >0 have the movable boundary
away from its corresponding endcap, while states with
g <0 have the movable boundary close to its correspond-
ing endcap. Our use of two movable boundaries eliminat-
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ed this asymmetry, because the second movable boundary
could be placed the same distance from the endcap as the
one used to create the correct wave number. This elim-
inated the nonuniform wave number for § <0.350, and
we found agreement with theory in this range of §. These
observations are consistent with thermal heating at the
ends being the source of nonuniformities in both experi-
ments. With two movable boundaries or one movable
boundary and § <0, the working fluid is heated more or
less symmetrically from both ends. No significant nonun-
iformity in wave number develops, and there is agree-
ment between theory and experiment. With one movable
boundary and g >0, the working fluid is heated asym-
metrically from the ends which results in a nonuniform
wave number and disagreement with the theory which
applies to the uniform state.

Because the nonuniformity in wave number persisted
in the present experiment for § >0.350, we believe it is
possible that this nonuniformity is an intrinsic instability.
The Taylor-Couette system can be described by a phase-
diffusion equation in which the diffusion constant goes to
zero at the stability boundary [5]. For certain values of
the coefficients in the phase-diffusion equation, there exist
states with a localized nonuniformity in the wave number
[16—19]. In the Taylor-Couette system [14], these states
might exist for § > 0.350 and not exist for § <0.350. On

the other hand, for § >0.350 the system may simply be
more susceptible to the small experimental asymmetries
remaining. Both of these explanations for the nonunifor-
mity in wave number are plausible. For large g the phase
diffusivity remains small further away from the stability
boundary than does [20] for smaller g, and a system with
a smali diffusivity is more sensitive to external imperfec-
tions. The use of two boundaries could have reduced the
asymmetry in the heating enough to remove the problem
for § <0.350, but for § > 0.350 the system could be sensi-
tive enough that it still responded to some remaining
small asymmetric heating. More work is needed to deter-
mine whether or not the observed nonuniform wave num-
ber is caused by an intrinsic instability or is the result of
the smaller diffusion constant and experimental imperfec-
tions.
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FIG. 1. Schematic diagram, not to scale, of the apparatus
showing the shape of the movable boundaries. See the text for
the dimensions. The axial position of each boundary is adjust-
able by means of the two thin stainless-steel rods attached to
each boundary as shown.
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FIG. 10. Gray scaled space-time plot showing the evolution
of the system following a quench using the radius ratio n=0.75
apparatus. The quench was from €=2.81 to 1.96 for a state
with average reduced wave number §=0.66. The theoretical
boundary is at é=2.00 for this value of §, and is predicted to be
determined by the g /2 instability.
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FIG. 8. Gray-scaled space-time plots of the evolution of the
system after a quench from a uniform state. For images (a)-(c),
the instability is predicted to be g /2, while it should be of the
Eckhaus type for image (d). For all four quenches, t =0 is the
time that the final value of € was reached. (a) and (b) are for
quenches from €=2.38 to 1.84 and 1.85, respectively, for a state
with average reduced wave number §=0.495. (c) is for a
quench from €=2.34 to 1.84 with §=0.492, and (d) is for a
quench from €=0.14 to 0.05 with §=0.174. The theoretical

boundary is at e=1.866 for §=0.495, e=1.840 for §=0.492,
and €=0.062 for §=0.174.
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FIG. 9. Magnified view of two pair losses. (a) is a magnified
view of the central pair loss of Fig. 8(a), (7,€)=1(0.495,1.84),
and 9(b) is a magnified view of the pair loss in Fig. 8(d),
(g,e)=1(0.174,0.05).



